PhD вакансии в Donders Institute for Brain, Cognition and Behaviour

В одном из самых престижных когнитивных исследовательских институтов в мире — Donders Institute for Brain, Cognition and Behaviour — открыты 2 аспирантские (PhD) позиции.

Один проект по восприятию и зрительному вниманию, второй — по сенсомоторному контролю. В обоих случаях минимальной требуемой квалификацией является степень магистра по когнитивной нейронауке или смежной дисциплине, и опыт проведения исследований. Срок подачи документов 15 мая. Подробности по ссылкам.

http://www.ru.nl/newstaff/working_at_radboud/details/details-vacature?recid=532 034&taal=uk&pad=%2fnewstaff

http://www.ru.nl/newstaff/working_at_radboud/details/details-vacature?recid=531 794&taal=uk&pad=%2fnewstaff


PhD вакансия в Университете Амстердама

Открыта PhD позиция в Университете Амстердама (UvA), спонсируемая грантом Европейской Комиссии.

Тема проекта — регуляция эмоций. Необходимая квалификация — магистр психологии\когнитивной науки, желательно с опытом изучения эмоций. Срок подачи CV, мотивационного письма и академической выписки — 1 июня

Подробнее по ссылке: http://www.uva.nl/en/about-the-uva/working-at-the-uva/phd-positions/item/14−159.html


Австралийские стипендии Endeavour

Правительство Австралии объявило стипендии Endeavour для не-австралийцев, собирающихся учиться или проводить исследования в университетах страны-наоборот. Подача документов до 30 июня (к этому моменту уже должна быть договоренность с принимающей лабораторией). Возможно использование стипендии для обучения в магистратуре, аспирантуре, и для стажировок постдоков.

aei.gov.au/scholarships-and-fellowships/international-applicants/pages/international-applicants.aspx

Подробнее об обучении в Австралии: www.studyinaustralia.gov.au/


Рабочая память: модели и подходы к изучению

Модели рабочей памяти и подходы к ее изучению

Рабочая память — кратковременное (до нескольких секунд) хранение сенсорной информации и возможность ею оперировать. Рабочая память — один из ключевых когнитивных процессов, лежащий в основе широкого спектра наших возможностей — от восприятия до когнитивного контроля и принятия решений. Недавно вышедшая в Nature Neuroscience обзорная статья описывает современное положение дел в области изучения рабочей памяти, включая различные экспериментальные процедуры, предлагаемые теории и соответствующие им данные, а также обсуждение вопросов, над которыми ученые будут работать в ближайшее время.

Пользуясь материалами этой статьи и одной из иллюстраций, мы сегодня расскажем о современных моделях рабочей памяти.

Итак, рисунок иллюстрирует четыре модели рабочей памяти. Для каждой модели на верхних двух схемах показаны репрезентации (сохранение объектов в памяти) в случае малого (слева) и большого (справа) количества запоминаемых объектов, а на нижних двух схемах — предсказываемое моделью распределение ответов испытуемых. Для удобства можно представлять себе эксперимент, где испытуемому нужно запомнить ориентацию в пространстве нескольких отрезков и затем воспроизвести один из них. Отклонение ориентации, данной испытуемым, от той, которая была ему предъявлена, и будет величиной ошибки. Основное, на что смотрят ученые при анализе данных таких экспериментов — параметры распределения ответов. Фактически, это ключ к тому, что происходит в рабочей памяти.

Теперь к самим моделям. В рамках классического подхода к рабочей памяти считается, что она жестко ограничена по объему и способна удерживать лишь несколько объектов — по числу имеющихся в ней «ячеек"/"слотов». Количество таких ячеек в разных теориях предлагается разное (пресловутые семь плюс-минус два, или четыре, или любое другое экспериментально обнаруженное число), и не исключается что для разных видов памяти это количество будет разным. Но суть остается прежней — либо объект входит в это число и попадает в рабочую память, либо не входит и не попадает. На рисунке (а) показано, как объекты попадают в одну из трех независимых ячеек памяти. Каждый объект хранится там в «хорошем качестве». Поэтому распределение ответов отражает небольшой разброс ошибок вокруг истинного значения запомненного объекта (например, оттенка цвета или ориентации в пространстве). Когда объектов больше, чем ячеек, часть из них не попадает в память. Согласно этой модели, в этом случае распределение ответов испытуемых будет состоять из очень точных ответов для запомненных объектов (серая часть распределения) и угадывания (зеленая часть).

Несмотря на большую поддержку со стороны данных, у этой модели есть существенный недостаток — она отрицает, что объекты могут запоминаться с разным уровнем точности. Например, в ситуации, если вы помните что фигура была синяя, но не можете припомнить оттенок. Альтернативный и активно разрабатываемый сейчас взгляд на рабочую память — ресурсный — основан на результатах, демонстрирующих, что объекты могут запоминаться с разной точностью, и чем больше объектов мы пытаемся удержать в памяти, тем менее точными будут их следы-репрезентации. Предполагается, что существует некий ограниченный ресурс «памяти», который может гибко распределяться между тем количеством объектов, которое нам нужно запомнить. В результате, с увеличением количества объектов точность их репрезентаций падает, хотя все они в определенной степени будут представлены в рабочей памяти. Рисунок (b) демонстрирует равномерное распределение ограниченного ресурса памяти (желтая масса) между всеми предъявляемыми объектами. Распределения демонстрируют, что точность репрезентаций равномерно снижается с увеличением количества объектов.

У базовой ресурсной модели есть две мощные вариации. Первая — модель дискретных репрезентаций. Ключевое ее отличие — наличие фиксированного «потолка» в отношении количества запоминаемых объектов (как в классической модели слотов).

Эта модель основана на предположении о том, что ресурс памяти исходно распределен на ограниченное количество «квантов» (рисунок с). Если объектов мало, кванты могут объединяться и обеспечивать лучшее качество репрезентации. Если объектов много, каждому объекту либо достанется «кусочек памяти» и какая-то репрезентация, либо не достанется, и объект в памяти представлен не будет. В соответствии с этим, ошибки в задачах на память будут двух видов — ошибки, вызванные шумом репрезентации (имеют нормальное распределение), и ошибки, вызванные угадыванием (имеют равномерное распределение). На рисунке © изображено, как для большого количества объектов кванты «разделяют ресурс», так что качество репрезентации отдельного объекта падает (серая часть распределения). При этом объекты, которым не хватило квантов, остаются не представленными в памяти, что будет вызывать ответы-«угадывания"(зеленая часть). Обратите внимание, как это распределение отличается от тех, что были в случаях (b) и (а).

Вторая вариация ресурсного подхода — модель переменной точности. Ее главное отличие — ресурсы распределяются между объектами неравномерно. Какие-то объекты могут быть представлены хуже, какие-то — лучше, но в целом в память попадают они все (рисунок d). Когда испытуемых просят восстановить из памяти объект, который они запомнили лучше всего, они справляются с задачей удачнее, чем когда им предлагается случайно выбранный объект. Следовательно, качество репрезентаций нескольких одновременно запомненных объектов обязательно различается, даже если все остальные параметры равны. А вот средняя точность будет зависеть от количества объектов, поскольку ресурс ограничен. На рисунке (d) показано, что в случае одного объекта, как и в остальных моделях, мы получаем репрезентацию хорошего качества и, соответственно, точные ответы. В случае большого количества объектов распределение будет состоять из большого количества нормальных распределений разной ширины (обратите внимание на специфическую форму и высокие «края» итогового распределения). Эта модель действительно хорошо описывает данные, но вот причины таких вариаций точности и их нейронные основания еще предстоит найти.

Исследование рабочей памяти — это увлекательнейшая область, использующая весь арсенал методов современной экспериментальной психологии и нейронауки, от работы с единичными нейронами до бихевиоральных экспериментов, включая клинические исследования и компьютерное моделирование. И несмотря на длительную историю, область все еще продолжает активно развиваться, постепенно улучшая наши представления о самой рабочей памяти и об огромном количестве зависящих от нее процессов.


Computing for Vision Science

Эта запись больше для продвинутых #горячихюныхкогнитивных. Есть такая вещь, как исследования зрения, которыми занимаются когнитивисты всех мастей. Это самая что ни на есть hard science, требующая серьезного подхода и серьезных инструментов. Тем, кто работает или планирует работать в этой области, мы очень советуем обратить внимание на страницу «Software for visual psychophysics: an overview» (http://www.hans.strasburger.de/psy_soft.html), где представлено множество полезных материалов. Пусть название не вводит вас в заблуждение, там не только программы и не только психофизические. Там есть такие вещи как собрание статей, посвященных проблемам задания точного времени предъявления на современных мониторах, набор приложений для анализа с использование теории обнаружения сигнала, куча программ для психофизики, ссылки на полезные обсуждения на форумах, интересные материалы для студентов, и т. д., и т. п. В общем, для исследователей зрения это настоящая сокровищница.

TNquG7cjgTU